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In this paper we argue that the effects of irregular chaotic motion of particles transported by blood can play
a major role in the development of serious circulatory diseases. Vessel wall irregularities modify the flow field,
changing in a nontrivial way the transport and activation of biochemically active particles. We argue that blood
particle transport is often chaotic in realistic physiological conditions. We also argue that this chaotic behavior
of the flow has crucial consequences for the dynamics of important processes in the blood, such as the
activation of platelets which are involved in the thrombus formation.
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I. INTRODUCTION

It is well-known that streamlines and particle trajectories
are different in nonstationary fluid flows. In particular,
simple flow fields may give rise to a complex dynamics of
the advected particles. Even in very simple flows, such as,
for example, laminar time-periodic ones, the particle trajec-
tories are in general very complex, and often display chaotic
behavior �1�. This chaotic advection has been shown to have
far-reaching consequences for the dynamics of active flows
�2�—flows in which some kind of chemical or biological
activity takes place. Application of the theory of transient
chaos to the dynamics of active processes has shown that
advective chaos changes the effective rate equations of the
active processes, and in many cases it enhances the total
productivity of the reaction �or biological process� �3�. This
phenomenon is very general, and has found applications in a
number of systems, including atmospheric chemistry �4�,
plankton population dynamics �5,6�, and even the early evo-
lution of life �7� �for a review see �8��.

Blood flows in our veins and arteries follow a pulsating
pattern, driven by the heart. This means that we can model
blood flow as a time-periodic flow; the above discussion then
suggests that the motion of advected particles may be cha-
otic. It is very important to investigate this possibility, since
blood is an active flow. The many kinds of cells and organic
molecules making up blood are not just carried passively by
the flow around them; they participate in a multitude of
chemical reactions and biological interactions. The rates and
other properties of these processes will be crucially affected
by the dynamics of the flow if it has chaotic advection. Al-
though there are plenty of studies based on numerical simu-
lations of blood flow, to our knowledge there is no study
addressing the issue of chaotic advection and its conse-
quences in blood flow.

The purpose of this paper is to use the concepts, tools, and
techniques of dynamical systems to investigate the dynami-
cal properties of blood flow, and in particular to study under
what conditions it has chaotic advection. We use simple two-
dimensional �2D� models for the flow in blood vessels, and
choose realistic physiological values for parameters such as

the flow velocity and period. We focus on the case where the
vessel has a localized anomaly in its diameter. This anomaly
can be either a constriction—a stenosis, partial blocking of
the vessel—, or a sudden enlargement—an aneurysm. This
topic has great medical relevance, and such anomalies are
directly related to the cause of serious and often fatal circu-
latory diseases.

Our main result is that under most conditions, sudden
changes in the geometry of the vessel, such as constrictions
or aneurysms, result in chaotic advection in the blood flow.
This fact has a number of important consequences. Active
processes can be greatly enhanced in chaotic flows, a fact
which is not taken into account in the traditional study of
physiological and biochemical phenomena taking place in
blood. We argue that advective chaos must be properly taken
into account for processes such as platelet activation and
thrombus formation, which are associated with vessel con-
strictions and thus will be affected by the chaotic nature of
the advection. We show that chaos induces a large increase in
the average residence time of an advected platelet, which
means it will have more time to become reactive and adhere
to the vessel wall. We also show that the spatial distribution
of particles with long residence times follows a fractal pat-
tern, which has a strong effect on the dynamics of platelet
activation and of other processes.

The paper is organized as follows: chaotic advection in
fluids is briefly reviewed in Sec. II. The models we use in our
simulations and the choice of parameters, as well as numeri-
cal methods, are introduced in Sec. III. In Sec. IV we study
the fractal spatial filamentary distribution of advected par-
ticles induced by chaos, and discuss on its importance for
platelet activation and other active processes in the flow. In
Sec. V we show how the residence time of particles behaves
for the different anomalies. Then in Sec. VI we discuss the
results and outline the possible applications resulting from
the emerging fractal structures and their effects on the active
processes in blood flows. Finally, we summarize our conclu-
sions in Sec. VII.

II. CHAOTIC ADVECTION

Blood flow in blood vessels falls in the class of open
flows. In open flows one usually defines a region of observa-
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tion, which in our case is some appropriate region surround-
ing an anomaly in the vessel wall’s shape. The fluid trans-
ports particles into the region of observation, where it will
spend some time, and then it will usually be washed out
downstream. Before leaving this region, however, the par-
ticles may exhibit very complicated, chaotic behavior. In
open flows, there is typically a set of advected particles that
never leave the region of observation, and get trapped in the
so-called chaotic set, which is the set of all particle orbits
trapped permanently in the region of observation �1�. The
chaotic set hence lies entirely in the region of observation.

The particle orbits of the chaotic set are exceptional �in
the sense that the chaotic set has null measure�, and unstable
particles in their vicinity will almost always deviate from the
chaotic set and leave the region of observation. Despite this,
the chaotic set governs the long-time dynamics of the sys-
tem; particles that happen to come close to the chaotic set
wander in the vicinity of the trapped orbits for a long time,
and eventually leave them �along the so-called unstable fo-
liation�. This mechanism gives rise to very large residence
times for some particles. This will be discussed further in
Sec. V.

One of the most visible effects of chaotic advection in
open flows is that the particles with long residence times
accumulate along a characteristic filamentary fractal struc-
ture. When the particles are chemically or biologically ac-
tive, the effective rate equation governing the dynamics of
the corresponding active process is determined by the fractal
dimension of the filamentary set �3,8�. We will see that such
filamentary structures are present in blood flow in many con-
ditions, and argue that their presence has a major impact on
the dynamics of important biochemical processes such as
platelet activation.

A conspicuous feature of chaos is the exponential separa-
tion of nearby trajectories, which is caused by the combina-
tion of stretching and folding dynamics present in all chaotic
systems. It is well established that the blood particles respon-
sible for thrombus formation—platelets—are activated in re-
gions of elevated shear stress �9,10�. Chaos provides a natu-
ral mechanism for activating platelets in this way, since the
stretching and folding in the dynamics deform them. This
facilitates their activation and later deposition in low shear
stress regions.

Next we introduce the models we use to investigate these
issues.

III. FLUID MODEL

To investigate how anomalies in arterial wall shape affect
chaotic mixing, we use simple 2D models to mimic blood
flow in two different pathological conditions: partly blocked
vessels in coronary arteries and aneurysms in abdominal aor-
tas.

In order to find the trajectories of particles transported by
the blood, first the velocity field v�r , t� of the flow has to be
computed. To achieve this, we use the finite-volume solver
Fluent �11�, the number of nodes used in the computations
varied between 112 211 and 141 501.

Blood is considered to be incompressible �12� and New-
tonian �12,13� with a constant dynamic viscosity �

=0.04 g /cm·s �14�; the density of the blood is well approxi-
mated to be �=1.06 g /cm3 �15�. Besides the no-slip bound-
ary condition on the rigid surface of the vessel wall, the
time-dependent inlet velocity of the blood flow is specified
both for the coronary artery and the aorta. The inlet velocity
is assumed to be uniform far upstream, and closer to the
region of interest the appropriate velocity profile across the
vessel is found to develop. The model used for the time-
dependence of the inlet velocity is shown in Fig. 1�a� for the
coronary artery and in Fig. 1�b� for the aorta during one
heartbeat in exercise conditions �12�. In exercise, the resting
stage of the cardiac cycle, which is a characteristic for rest-
ing conditions, is missing, and the flow rate can be modeled
by a rapid sequence of pumping stages. The flow rates shown
in Fig. 1 are approximations of measured flow rates; they are
simple enough for a mathematical treatment, while at the
same time being reasonably close to the measured values.

Figures 2 and 3 show snapshots of the streamlines, char-
acterizing the flow patterns for the partly blocked artery and
for the aneurysm, respectively.

We assume that it is only the fluid motion that governs the
behavior of the transported particles, and the effects of dif-
fusion are negligible. In fluid flows, the importance of the
kinematic effects relative to the diffusion are characterized
by the Péclet number �16�

Pe =
Rv

Ddiff
, �1�

where R is the radius of the blood vessel, v is the average
flow velocity, and Ddiff is the diffusion coefficient. For large
enough blood vessels, coronary arteries, and aortas, the ra-
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FIG. 1. Model of the inflow velocity in case of �a� coronary
artery and �b� abdominal aorta during one heartbeat cycle. The ar-
rows point to time instances when the streamlines are shown in
Figs. 2 and 3.
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dius is on the order of 1 cm, and v=10 cm /s is a typical
velocity. For platelets, the diffusion coefficient is Ddiff
=10−7 cm2 /s �17�, which implies that the Péclet number is
Pe=108. Even if we take processes on the length scale of
platelets, R�10−4 cm, we have Pe=104. These very large
values indicate that in blood vessels of large diameter the
effects of diffusion are negligible.

Despite the relative simplicity of the flow field, the mo-
tion of particles transported by the blood is generally very
complex. The finite size and inertia of the particles, the con-
tact between particles of various shapes and sizes, the feed-
back of the particle motion to the flow renders it infeasible to
follow the motion of too many particles. Also, many of these
effects are not precisely known and are difficult to model. As
a first step, we use a simple approximation, which assumes
that the particles take on the velocity of the fluid, without
inertia, and provide no feedback to the flow. However, these
particles do not follow the instantaneous streamlines that are

time-dependent; rather, their velocity is the instantaneous ve-
locity of the surrounding fluid. Then the particle at a position
r�t�= �x�t� ,y�t�� takes on the velocity v�r , t� of the fluid at
that location

dr�t�
dt

= v�r,t� . �2�

Depending on the actual flow pattern, the fluid velocity on
the right-hand side of this equation is usually a nonlinear
function of the position r and time t, and the solutions of this
equation are typically chaotic, even if the flow field v�r , t� is
regular and nonturbulent.

IV. FRACTAL FILAMENTS

The sensitive dependence on the initial conditions implies
that when we inject a blob of particles into a flow displaying
chaotic advection, the initially close particles in the blob rap-
idly diverge from each other. As a consequence, the stretch-
ing and folding action of the chaotic dynamics generates a
characteristic pattern of long winding filaments with an in-
tricate structure. The fractal filaments trace out the unstable
foliation of the chaotic set responsible for the complicated
behavior of the advected particles.

In order to see if blood flow near shape anomalies is cha-
otic, we use the blood flow model introduced in the previous
section to follow the trajectories of many particles simulta-
neously, initially located evenly all over the observed region.
The patterns traced by the initial blob are shown in Fig. 4 for
the model of the coronary artery, and in Fig. 5 for the model
of the aorta with aneurysm. Both figures show the location of
the particles which have not been washed out after some
given interval, chosen to be much longer than the flow’s
period. The particles with long residence times either accu-
mulate along the vessel wall, where the fluid is very slow, or
along the evident filamentary structure. The visual appear-
ance of Figs. 4 and 5 strongly suggest that both cases have
chaotic advection. To confirm this, we compute the fractal
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FIG. 2. Snapshots of the streamlines of the blood flow in the 2D
model of an obstructed coronary artery. The narrowed wall segment
is of sinusoidal shape in the model. The time instances of snapshots
are shown with arrows in Fig. 1�a�. The Reynolds number is 100,
with peak value 200 during the cardiac cycle.
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FIG. 3. Snapshots of the streamlines of the blood flow in the 2D
model of an aorta with aneurysm. The bulge has a sinusoidal shape
in the model. The time instances of snapshots are shown with ar-
rows in Fig. 1�b�. The Reynolds number is 1600, with peak value
2200 �close to turbulent threshold of around 2300� during the car-
diac cycle.
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FIG. 4. Snapshots of the unstable foliation of blood flow in the
stenosed coronary artery.
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FIG. 5. Snapshots of the unstable foliation of blood flow in the
aorta with aneurysm.
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dimension D in both cases. We find the values D
=1.72�0.02 for the coronary artery, and D=1.67�0.02 for
the aorta with aneurysm; this confirms that particle advec-
tion is indeed fractal due to the presence of chaos in the
underlying dynamics.

We note that no fine tuning of parameters was necessary
to find the chaotic regime; it is very typical, and present for
a broad range of parameters. We also emphasize that the
parameters where chaos is found are realistic, and fall well
within the range of normal human physiology. Therefore,
chaotic advection is a real property of blood flows in the
presence of aneurysms and blocking vessel wall structures.

The fractal nature of the particle distribution implies that
biochemically active particles such as platelets tend to con-
centrate along filaments such as those in Figs. 4 and 5. Con-
sidering that these particles are strongly mixed and stretched
along these filaments, the majority of the activity takes place
along them.

Mathematically, the filaments are approximations of the
unstable foliation of the chaotic set �18�. The unstable folia-
tion is not a static structure, since the flow is time-dependent;
but in a time-periodic flow, the set traced out by all these
trapped particles repeats itself with the period of the flow.
The periodic oscillation of the unstable foliation also means
that parts of it can overlap with regions of the flow with high
shear stress, for example, at the throat of a stenosis, and other
parts overlap with more stagnant regions. These regions cor-
respond to the location of high activation rates of platelets
�for example�, or to the location of their deposition, respec-
tively. The interplay of high mixing rates and increased pe-
rimeter due to fractality with the effects of high or low shear
regions is expected to affect greatly biochemical processes in
the blood.

V. RESIDENCE TIME

A very important property of the trapped blood particles is
their residence time—the time the particles spend in the re-
gion of observation—in the vicinity of the vessel wall irregu-
larities. For example, platelets need to spend a minimum
amount of time in the high shear regions in order to be acti-
vated, and they also need time to attach to the wall and
increase the blocking structure. The presence of chaos affects
dramatically the residence time of advected particles in the
blood: particles which start close to the stable foliation stay
in the region of observation for a very long time tracing out
the unstable foliation, while others are rapidly washed down-
stream.

Figure 6 gives a global image of the residence time as a
function of the initial position of the particles in a coronary

artery in exercise condition. The time the particles spend in
the region of observation is shown with color coding. A
lighter color indicates that the particle starting from that
point stays longer before transported downstream, while
darker colors correspond to shorter residence times.

Figure 7�a� gives more insight into the intricate structure
of the residence time function. The residence time is plotted
as a function of the initial position of the particles starting
from a straight line across the blood vessel. It is clear that the
particles initially closer to the wall, in general, tend to spend
more time in the region of observation. This is a conse-
quence of the “stickiness” of the vessel wall, caused by the
fact that the velocity of the flow is very small close to the
wall. Besides this effect, there are also high peaks present in
regions far away from the walls, and they have a quite intri-
cate structure. These high peaks are the consequence of the
chaotic particle trajectories. The distribution of the high
peaks is quite irregular, but has a characteristic fractal struc-
ture: the peaks are at the intersection of the line of initial
conditions with the unstable foliation. Therefore, the fractal
dimension of the set of these high peaks is one less than that
of the corresponding unstable foliation �19�. Subsequent
magnifications reveal more of this intricate structure, as il-
lustrated in Fig. 7�b�, which shows a blow-up of a region of
Fig. 7�a�. The high peaks and the rapid irregular changes
between long and short residence times illustrate the stretch-
ing properties: initially close particles may follow com-
pletely different orbits as a result of high stretching and
folding.

0.00.00.0

0.20.20.2

0.40.40.4

9 10 11 129 10 11 129 10 11 12

y
(c

m
)

y
(c

m
)

y
(c

m
)

x (cm)x (cm)x (cm)

FIG. 6. �Color online� Time spent in the region of observation as
a function of the initial position. Lighter colors indicate long resi-
dence time, up to 100 heartbeat cycles.

0

40

80

120

160

200

0.2 0.24 0.28 0.32 0.36 0.4

R
es

id
en

ce
tim

e

y (cm)

0

40

80

120

160

200

0.276 0.277 0.278

R
es

id
en

ce
tim

e
y (cm)

(a)

(b)

FIG. 7. Residence time of particles started from the x=9 cm
line in the region of observation before reaching the x=13 cm line
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The same high stretching affects particles, like platelets or
von Willebrand factor, which is a molecule associated with
platelet activation in high shear regions �20� via a conforma-
tional change resulting in attachment. We argue that one
must take into account not only the activation due to high
shear, but also the exponential separation of nearby points in
chaotic flow and the fractal distribution of particles with long
residence times.

We found fractal structures and fractal residence times
similar to the ones shown here for many conditions, includ-
ing less severe vessel wall irregularities and under resting
conditions, showing that chaotic advection is in fact a very
common regime in blood flow.

In a nonattracting chaotic system such as open flows, it
has been shown that the decay rate of particles obeys the
following law �18�:

N�t� = N�0�exp�− t/�� , �3�

as long as the dynamics is hyperbolic. Here N�t� is the num-
ber of particles in the region of observation at time t and � is
the mean residence time.

Although strictly speaking our problem is not hyperbolic
because of the stickiness caused by the walls, we measure
the mean residence time by obtaining the residence time for
many particles starting from initial positions away from the
walls, and then we fit the results to Eq. �3�. The results ob-
tained for the severely constricted artery in exercise condi-
tions �cf. Figure 4� gives �=19.2 s, while the result for the
aorta with the aneurysm �cf. Figure 5� is �=2.01 s. Note that
these values are quite large compared with the period of the
heartbeat, which is 0.45 s as shown in Fig. 1 for the exercise
conditions. The severely constricted artery result especially
shows dramatically that chaos can induce a very large resi-
dence time.

The residence time of any given particle depends sensi-
tively on its initial position. There is a well-known relation
connecting the residence time �, the fractal dimension D and
the Lyapunov exponent � �21�

� =
1

��2 − D�
. �4�

This relation is valid for hyperbolic open flows.
By using relation �4�, we can compute the Lyapunov ex-

ponent � from the measured fractal dimension D and mean
residence time �. The computed value for the coronary artery
�Fig. 4� is �=0.187 s−1, that for the aorta with the aneurysm
�Fig. 5� is �=1.648 s−1. Comparing this result with other
simulations �not shown� carried out with smaller vessel wall
irregularities and in resting conditions, we found that the
more severe flow disturbance and the more strenuous exer-
cise regimes lead to higher values of the Lyapunov exponent,
and hence the particle motion becomes more chaotic. We
also found consistently that chaotic advection makes an ap-
pearance in different sizes and shapes of anomalies.

VI. DISCUSSION

In this paper we draw attention to the effects of kinematic
characteristics of mixing in the blood. The theory of nonlin-

ear dynamics, and in particular chaotic advection, is the ap-
propriate framework to address this issue. This, in parallel
with our simple numerical studies, reveals the fractal fila-
mentary distribution of particles with long residence times
close to vessel wall irregularities. We emphasize that this
feature is independent of the details of our model, and it is
expected to hold for particles transported by blood under
general conditions. Similar sensitive dependence of resi-
dence times and particle orbits on initial positions has been
found in simulated blood flows in previous works �22�,
which is consistent with our results. This phenomenon has its
origin in the chaotic nature of the advection dynamics of the
flow.

In the blood, the advected particles can be active in a
biochemical sense. Some previous models �22� have sug-
gested �23–25� to include the residence time of the particles
in their activation and adherence model. However, they mea-
sured a time-averaged residence time over periods of the
pulsating flow, which renders the filamentary structures in-
visible. We know, however, that the fractal nature of these
filamentary structures is very important for the dynamics of
active processes, including chemical reactions and biological
activity. When activation takes place along fractal filaments
the fractal dimension appears in the biological rate equations.
This is the result of the very long fractal interface between
different chemical substances or biological species; the con-
sequence is the enhancement of the rate of activity. The frac-
tal filaments serve as the skeleton and the dynamical catalyst
of the activity. The production term of the biological activity
has been shown to follow the scaling law �8�:

P � c−�, �5�

where c is the concentration of the chemically active mate-
rial, and �= �D−1� / �2−D� depends uniquely on the fractal
dimension of the unstable foliation. As the fractal dimension
D is between 1 and 2, � is always positive, which implies
that the production rate increases as the concentration de-
creases; as the concentration approaches zero, the production
rate diverges. This seems at first a very counter-intuitive phe-
nomenon, and it shows how dramatically chaos can affect the
dynamics of active processes.

We have shown that these filamentary structures are
present in blood flow in many situations, both in resting and
exercise conditions. Their presence impacts greatly on the
dynamics of active processes taking place in the blood. An
important example is platelet activation and deposition,
which plays a major role in blood clotting and thrombus
formation. We suggest that the large stretching experienced
along the unstable foliation enhances the activation of plate-
lets. These effects—the fractality of the unstable foliation
where residence time is long �� is much longer than the
heartbeat cycle� and stretching is high ��	0�—lead to an
enhanced activation of the platelets along the unstable folia-
tion. The activation of platelets is expected to follow the
general production Eq. �5�, hence the chaotic dynamics and
the fractality of the distribution of the transported inactive
platelets is expected to play a major role in their dynamics.

It has been observed that atherosclerotic plaques or
thrombi �13,26� usually build up downstream from the flow
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disturbances. This is in the recirculation region of the flow,
where shear is quite low; but this is also the location of
chaotic particle orbits and filaments of long residence times.
All of these effects point in the direction of distal growth of
plaques or thrombi: the long residence time and the filamen-
tary structure promote attachment, while low shear helps at-
tached particles to remain bounded to the vessel wall.

Similarly, the stagnating flow has an important role in
aneurysms. In these regions of vessel wall dilation, blood
particles spend a long time, as believed, trapped by vortices
forming in the bulge of the vessel wall �27� reducing the
amount of “fresh” particles, and hence oxygen, brought by
the flow to the aneurysm. The long residence time in the
aneurysm then leads to weakening of the wall and the in-
creased potential of clotting and thrombus formation �22�.

A more complete treatment of fluid flow in blood vessels
should include also other important effects. For instance, the
compliance of the vessel wall would modify the flow field,
but the important property, the pulsating flow would remain,
which would result in similar chaotic advection. Variations in
the heartbeats would result in a nonperiodic flow, which is
known not to have a major effect on chaotic advection �8�.
The numerical values computed in our model are likely to
change somewhat if these effects were incorporated in the
model, but the qualitative behavior would remain.

VII. CONCLUSIONS

Recent advances in the field of chaotic advection provide
the impetus to revisit the dynamics of particles transported

by blood flow in the presence of vessel wall irregularities.
Each irregularity, being either a narrowing or expansion of
the vessel, generates time-dependent flow patterns which can
result in very complex motion by the advected particles. We
have shown, using numeric models with realistic parameters,
that the dynamics of particles transported by the blood flow
in vessels with wall irregularities is typically chaotic. A con-
sequence of this chaotic advection is the appearance of a
characteristic filamentary distribution of advected particles.
The particles transported by the blood which spend a long
time around a disturbance either stick to the vessel wall or
reside on fractal filaments. We argued that the nontrivial
long-time distribution of transported particles has major ef-
fects on biochemical processes occurring in blood flow, in-
cluding the activation and deposition of platelets. A clear
future direction in this field is to take the enhancement of
active processes by chaotic activation into account in a real-
istic model of platelet activation �and similar processes�, and
derive testable predictions from this.
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